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ABSTRACT

By using a linear systems theory approach, an ocean

medium transfer function based on the WKB approximation can be

developed. The phase computations for the transfer function

are made by evaluating the WKB phase integral.

Two applications of ray acoustics theory are investigated

as accurate, efficient alternatives to direct numerical

integration of the WKB phase integral. Both applications base

phase computations on signal travel time. The difference is

their treatment of the sound-speed versus depth data pairs.

One forms a sound-speed profile by using the piecewise linear

approximation method while the other uses an Akima cubic

spline fit to the data.

Each method can identify source-to-receiver eigenrays and

provide ray trace plots.
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I. INTRODUCTION

A. BACKGROUND

In analyzing ocean acoustic pulse-propagation problems,

accurate phase calculations must be performed in order to

predict the acoustic signal at the receiver. Linear systems

theory provides analytical expressions for analyzing the

propagating acoustic field [Refs. 1 - 4]. These well-known

equations form the basis for the FORTRAN programs developed in

this thesis.

Program input is depth versus sound-speed data pairs where

the speed of sound is an arbitrary function of depth. The

ocean is viewed as a linear, time-variant, space-variant

filter. The WKB approximation can specify this filter's

transfer function [Refs. 1 - 4]. For the arbitrary sound-

speed profile, no exact transfer function exists. The

transfer function requires a method for evaluating signal

phase at the receiver.

Two phase evaluation methods are presented and contrasted.

Each method calculates the phase of the acoustic signal for a

specified horizontal range. The first method overlays a

piecewise linear profile on the input sample values for the

speed of sound at various depths. The theory of ray acoustics

is used to calculate travel time and phase. The second method

fits a smooth cubic spline curve to the input samples. This
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method solves the propagation problem using a system of three,

first-order differential equations [Ref. 5]. Both methods

make phase calculations using signal travel times.

Additionally, each method is capable of identifying eigenrays

or rays that directly connect the signal source to the

receiver.

Another method is introduced to validate results. Direct

numerical integration is performed to calculate phase for a

single gradient, linear, sound-speed profile. A separate

FORTRAN program implements this numerical integration routine

providing a totally independent verification.

An overview of the theory behind each method is presented

in Chapter II. Computer simulation results are presented in

Chapter III for various input sound-speed profiles. Tabular

results of phase calculations are presented for each of the

three analysis methods. Using input from the piecewise linear

and the cubic spline/differential equation solution methods,

ray traces of the propagating field are presented as a visual

aid in interpreting the results.
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II. THEORETICAL BACKGROUND FOR THE
EVALUATION OF PHASE INTEGRALS

A. UNDERWATER ACOUSTIC PULSE PROPAGATION

Ocean acoustic pulse-propagation models can be derived by

using the principles of linear, time-variant, space-variant,

systems theory and the physics of wave propagation in

inhomogeneous media. Linear systems theory allows for the

development of an ocean medium transfer function. An ocean

medium transfer function that is based on the WKB

approximation has been derived and is given by References 1

and 2 as follows:

H(f,fr,yo;y) = A e-jf k,(c)dc e j2rrf , (y-y) (2.1)
VIky(y) I

where

f is the frequency in Hz

fr is the radial, spatial frequency in
cycles per meter

Yo is the source depth in meters

A =j VIky(yo) I (2.2)
47Tfy
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ky(y) is the propagation vector component in
the Y direction with units of radians
per meter and is given by

± 2r([f/c(y)] - r , fr < f/c(y) (2.3)
kyy) j2(fr 2 - [f/c(Y)] 2 'fr > f/c(y) (2.4)

c(y) is the sound-speed expressed as a function
of depth with units of meters per second

fy is the transmitted (input) spatial frequency
in the Y direction at the source in cycles per
meter and is given by

r ± [(f/c0 )2- fr2] , fr < f/c 0  (2.5)

T [fr2 - (f/c 0 ) 2] '/ fr > f/c 0  (2.6)

and

co is the speed of sound in meters per second at
the source depth y0 , that is, co = c(y0);

The plus (minus) sign in Eqs. (2.3) and (2.5) is chosen

whenever y - y0 > 0 (y - y0 < 0). The minus (plus) sign in

Eqs. (2.4) and (2.6) corresponds to the plus (minus) sign in

Eqs. (2.3) and (2.5). This thesis deals only with propagating

waves. Therefore, Eqs. (2.4) and (2.6) representing the

generation of evanescent waves (i.e., decaying exponentials),

will not be used.

The evaluation of the phase integral in Eq. (2.1), namely,

BY(y) = JYYk(4 )d (2.7)



has been attempted in past studies in which solution

techniques included direct integration and binomial expansions

[Ref. 3].

Computer programs using these techniques proved to be very

expensive in terms of CPU time. This thesis compares four

different methods for evaluating the phase integral. The four

methods are presented in the following sections.

B. DIRECT INTEGRATION

Computer code was developed to directly evaluate the phase

integral given by (Eq. 2.7) using numerical integration

routines from the International Math and Statistics Library

(IMSL). Direct integration is a time-consuming technique that

was applied only under the following constraints:

- free-space acoustic propagation

- linear sound-speed profile with a single gradient g
in inverse seconds and

- propagating signals that have not passed through a
turning point in the medium.

Expressions for the propagation vector component ky(y) of

the phase integral are given by Eqs. (2.3) and (2.4). For a

linear sound-speed profile with a single gradient, the

dependence of c(y) on depth y is given by

c(y) = c(y0 ) + g(y - Y0) (2.8)

where

c(y0 ) is the sound-speed at the source depth
y0 meters
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g is the sound-speed gradient, and

y is the desired depth for sound-speed.

Since the direct integration approach is limited to free-

space, single gradient, propagation problems, it is used only

to validate the results of other solution techniques for

several simple test cases. The results will be compared

against the next two methods to be presented. These methods

will apply the theory of ray acoustics [Ref. 4 & 5] to find

travel time. Phase calculations will be based on travel time

calculations.

C. PHASE CALCULATIONS BASED ON PIECEWISE LINEAR SOUND-SPEED

PROFILES

A FORTRAN program developed by Lim [Ref. 5] was the ray

acoustics propagation code that was used to draw ray trace

plots and to calculate travel time, in addition to the depth,

angle of propagation and path length along a ray path as a

function of horizontal range. This method applies ray

acoustics to a piecewise linear sound-speed model of the ocean

medium. Based on the input sound-speed versus depth data

pairs, layers are defined in the ocean medium. Each layer has

an upper and lower bounaary at specific depths. A constant

sound-speed gradient g is calculated for each layer. The

sound-speed for dny desired depth is computed using Eq. (2.8)

with the appropriate gradient.

In a constant gradient medium, ray acoustics theory allows

calculation of travel time with closed-form equations. For an

6



incremental increase in horizontal range from the source, the

angle of arrival for the propagating ray can be shown to be

(Ref. 5].
-1

g(y) = cos [cosg0 - b*g(y) * rngstp] (2.9)

where

go is the ray launch angle,

g(y) is the gradient in the layer at depth y, and

rngstp is the incremental increase in horizontal
range.

The ray parameter b in Eq. (2.9) is given by [Refs. 4 & 5].

b = sin30 / c(y 0 ) (2.10)

Knowing the arrival angle 0(y), the ray depth y is given by
[Refs. 4 & 5]

y = y 0 +-- -11 (2.11)
g sing (y0)

The arrival angle also allows calculation of travel time from

[Refs. 4 & 5]

-1ln tan[f (y)/2 (2.12)
g tan[/ (y 0 )/2 1

Once the travel time (in seconds) is found for the desired

horizontal range, total phase is given by

@T = 27 fr (2.13)

The phase integral given by Eq. (2.7) represents a phase

change in the depth (y) direction. The constant value of the
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propagation vector component in the radial direction allows

for easy calculation of phase change in the radial direction.

This value is given by

eR = 27rfr * hrzrng (2.14)

where hrzrnj is the total horizontal range traveled.

The phase in the depth direction is

Oy = e T - eR. (2.15)

Phase expressed in radians is a modulo 27r function. The

proper solution for the phase integral Eq. (2.15) must be

expressed as a modulo 2v function:

Ey = modulo (ey , 2?r ) . (2.16)

This method (referred to as method 1 in Ref. 5) is capable

of analyzing propagating rays at any horizontal range in

either free space or a bounded medium.

D. PHASE CALCULATIONS BASED ON AKIMA CUBIC SPLINES AND
ORDINARY DIFFERENTIAL EQUATIONS

This application of ray acoustics applies a more

sophisticated treatment to the depth versus sound-speed data

pairs sampled from the ocean medium. The data pairs are used

to form a smooth Akima cubic spline sound-speed profile.

Splines offer the advantage of using all data points in

generating a profile, and they place no restrictions on

spacing between data points. The Akima version of the cubic

spline was chosen for its excellent ability to combat wiggles

in the profile, that is, it suppresses oscillations that would
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cause overshoots and undershoots in the sound-speed versus

depth profile.

This method uses ray acoustics theory to generate a system

of three, first-order differential equations [Ref. 5]:

Y = Y2  (2.17)

*-c (y 1 )

b 2 (2.18)b 2c 3 (yl)

and

- 2(2.19)
bc 2 (y1 )

where

c(yj) is the derivative of the sound-speed with
respect to depth at depth yl,

Yl is the ray depth,

Y2 is the cotangent of the ray's arrival angle
P(y), and

Y3 is the travel time of the ray.

Once solved, this system of differential equations allows

phase to be calculated from travel time. The phase

calculation is performed exactly as shown for the piecewise

linear sound-speed profile.

Like the previous method, the Akima cubic

spline/differential equation solution can be used on free

space and bounded media problems.
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E. EIGENRAYS

Eigenrays are propagating rays that exactly connect the

sound source to the receiver. The FORTRAN propagation code

developed can search for and identify eigenrays. The input

required is

- depth versus sound-speed data pairs,

- source depth in meters,

- receiver depth and range in meters,

- angle step in degrees between possible eigenrays to
be evaluated, and

- allowed depth error denoted Yerror in meters.

Rays passing within the allowed error or tolerance Yerror of the

receiver are identified as eigenrays. The eigenray mode can

employ either the piecewise linear sound-speed profile or the

Akima cubic spline/differential equation method for ray

propagation.

The eigenrays are found by trial-and-error. This search

method was chosen after the IMSL DBVPMS program failed to

solve the problem. The DBVPMS program is a differential

equation solver that was applied to the system of differential

equations given by Eqs. (2.17) through (2.19). The routine

uses the shooting method to find eigenray solutions to

boundary value problems. It was unable to converge to a

solution. Solutions for the acoustic problems investigated

are difficult for this algorithm because of

10



- long propagation distances,

- the inhomogeneous ocean presents a continuously
varying medium with discrete boundaries, and

- the system of differential equations has non-constant
coefficients whose values are a function of depth.

When the eigenray mode is selected, rays that are not

refracted or reflected to within Yerror of the receiver are

discarded.

11



III. COMPUTER SIMULATION RESULTS

A. OVERVIEW

The computer simulation results presented in this

chapter perform phase calculations intended to:

- show that ray acoustics can be used to evaluate
the phase integral producing the same results as
direct numerical integration,

- show that the two methods of applying ray acoustics
theory (presented in Chapter II) produce equivalent
results within an acceptable tolerance,

- compare speed versus accuracy for the two methods for
a variety of test cases, and

- demonstrate the ability to identify eigenrays using
either of the ray acoustics methods.

B. DIRECT INTEGRATION

In the previous chapter, Oy(y) was shown as the solution

to the phase integral in the depth direction.

Oy(y) = k (C)dC (2.7)

The straight-forward evaluation technique is the brute

force approach using direct numerical integration. The phase

integral will be evaluated using direct numerical integration

for a simple test case. The results will then be compared to

phase values obtained using ray acoustics calculating phase

values from travel times.

12



Conditions for the test case are:

- source depth of 10 meters,

- receiver depth of 100 meters,

- linear sound-speed prpfile with a single, constant
gradient of 0.016 sec and

- four values of radial spatial frequency (FR values)
will be evaluated.

For each FR value, tabular results will show the

corresponding ray launch angle 03(y0). The relation between

the FR value and this launch angle is [Ref. 4]:

13(Y0 ) = sin' [FR * c(y 0 )/f] (3.1)

where

f is the frequency in HZ, and

c(y0 ) is the speed of sound at the source depth.

Table 3.1 shows the results produced by direct numerical

integration. Tables 3.2 and 3.3 show the results for the

Akima cubic spline/ordinary differential equation solver

(ODE solver) and the piecewise linear approximation ray

acoustics techniques, respectively.

The parameter of interest is THETAY representing the phase

change in the depth or Y direction. Table 3.1 shows these 0

values to be approximately 92, 86, 75, and 56 radians for the

four FR values chosen. Tables 3.2 and 3.3 contain four sets

of entries, each corresponding to an FR value. These entries

begin at 0 meters range and end at the range corresponding to

100 meters depth; thus, solving the phase integral for the 0y

13



TABLE 3.1
PHASE INTEGRAL SOLUTION BY DIRECT NUMERICAL INTEGRATION

INPUT DATA FOR PHASE INTEGRAL EVALUATION

F* 2-0.0 HZ VL - 10.0 H YU - 100.0 M RATIO - 0.9999 NIR 8

efL'Z 0.0o0TTT (TEL 0.0oTTiTo
YREF 0.0 II CYREF IS15000 P1/SEC G - 0.016000 I(uSEC)

METHOD - 2

EVALUATION BY IMNCLIO ROUTINE D0A4 WITH IRULE . 2

FRICYCLESH) BETAYOIOEG) PANGE AT ANGLE O ARRIVAL TURNING POINT TURNING POINT 7HETAR(RAD) THETAYIRADI

YU BETAY(OEG) DEPTNTI AANGE(NI

.TTo50 11.5:5 18.36009 11.536 0.10555E-06 0.G5?84E.04 0.38400E-01 0.029167954E0OZ

0.0665899710 23.552 39.2s2ls 2S57 0.1401DE.06 O.ZISICE-06 0.16t623E*02 0.8633840241-E-02
004T'803476 36.e24 67.4!8'2 36.866 O.126qZE*05 0.12522E*06 0.42124E-02 0.TR0TR5IRI1E-02
0-1:1I;794!S 5..04t 119-80722 53.112 0.23574E*05 O.?0527E.05 0.I0025E0S 0.56S7368413E*02

TABLE 3.2

PHASE INTEGRAL SOLUTION BY ODE SOLVER

(RAYS - F PRTALL T

YO 10.0 M DEPTH *100.0 M FREOC * 250.0 NZ CHAX . 1501.6 P1/SEC

FREOC/CMAX - 0.16649 CYCLEI/ RATIO 0.99OR9 FRMAX *0.16647 CYCLIES/M MFRS . S

DLTFR - 0.05!294. CYCLES,/m RP4OZTP *1.0 H H-RZRPJG * 15.0 M YR - 60.0 N

NOTEi FANIN . DLTFR

FR *0,3SZO'4858t72fiE-01 CYCLEWfM

3(140 - 11.52457521170979 DEG

RANGEINI DEPTH(N) 7RVLTIGEC) BE0AYILEG) BEEST 7HETAT(RAD) THETARIRADI 7HETAY(RAD)

0.0 10.00 0.000000 11.525 0.ISSIUE-03 0.0000000E.00 0.0000000E*00 0.0000000E-00

18.4 100.00 0.061200 11.536 0.1331SE-03 0.9613253E-02 0.3040846E-01 0.922914SE*0:

FR . 0.66588471763452E-01 CYCLFSIM

BETAC - 13.551?0,8398013. cEG

PAIIGC(M) DEP711INI TRYLTIGEC) BETAY(VEG) BTEG1' THETAT(RAD) OHETARIRAOI IHEOAY(RAD)

0.0 10.00 0.000000 23.552 0.26636E-03 0.OOO0OOTEOO 0TOOE00 0.0000000E.0 .00 OO0

59.3 100.00 0.065420 23.576 0.26636E-03 0.1027611E'03 0.1642273E-02 0.0633840E-02

FR - 0.9988345764SITRE-01 CYCLES/N

BETAO . 36-142440411644.77S DEG

R4.'"I, (m DEPIHI(M) I P ."-TI^E C ) TTIAY I D r) TEGT YHETATIRAD) TIIEIARIDAD) TNETAY(RAO)

0.0 10.00 0.0'00o *6.ele 0.3995!E-03 0.0000000E-00 0.0000000E.00 0.0000000E-00

6?.'. 100.00 0.074q32 36.066 0.3995!E-03 0.117703E03 0.4Z23274E-02 0.7537857E-02

BETAS 30ORTRIl CEG

QR4J4CE (m I LP T" fTNI TPLT(SEr) BEAY(tEr) BTEG
T  

1PETATIRAD) T,ETWRIAV) 7HETAYIRAV)

0.0" (TA cATTolY 51.74' TST700 0.TOOOEO 0000000F.00 0.00TOTOTTFOO

I 1 17.01 0.01,RR 0T ~ RTIO .1569262E.03 0.100ZsE-03 0.56S736SE02Z
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TABLE 3.3
PHASE INTEGRAL SOLUTION BY PIECEWISE LINEAR APPROXIMATION

RAY TRAC:Ih E-SIS P1CECCCNrIAR APPRCjKIMATION4

kCjATA C CEE F ORADIE4T-,c 3

G) 1) 01C0-11/ CE G( 2) -0.1600CE-01 1/^SEC

EE'AYC F PRALtT

YQ 13.3 m C;EDTH 102.',0 M FREOC r 250.0 HZ CHAX - 1501.6 m/sC

Fbt/M~ 0. 166411 CCE/ RATIO - C.9-9R FRAx', s 0. 1b647 CYCLES5/H HNS - 5

7 P CC32~CYCLES/fl RN3 CCW * 1.3 H -'2 150.0 H YR - 40.0 H

)T: FRH.'h = LTFRZ

* 11.52457521170930 LEO-

P471 C71 IV.TCC ETAY(LEC) BEEC TrETAT(PAU) I HrT&tR (P A Dh TIETAY(PAO)

3.050CC 11.525 0.!18; .COCOCO3E.00 0.00003035.00 0.00000300*00

.4. i2. ~ v.320 1152 3.2385-3 .961!:S3E-02 0.28408346C201 0.92291668E32

RF4.E) 7i7 TP, jT)CE EETAYUC75 EJTEC T HE TAT fR AD THE:IAR ( RAC THETAY (RAS)

S. 7c c 23,.552 0.266;bt-33 0.0CCCE3 0.030000-E-00 0.00000035-00

0.S71,2S 23.576 0.2o7L6E -C2 0.1027t1IIE-0, 0.1642'273E-0- 0.86338405=02

Z6.?3244391647 CCLC/

R AC~ PCri- TR.8CC BETA9)UCI5) ETECT ThET4T(PAD) H E T4R(CRA ) IHETAY(PAO)

I0.c .073 3 6.8214 C.33?s2--C3 0.OC3.CCE-oo 0.OOSOSOCE*30 0.0000035E00

t,. C.3 .K2 6.8b6 C.399535-o: 0.1177022CE,03 0.420237'E02, 0.75378575=02l

C.IC 533c4?1 3.5271E-33 C.C7CEC 0.05030 .CCOTC E=03
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value when a ray travels from 10 to 100 meters depth. The

significance of these three tables is that the ray acoustics

methods are yielding the same phase values 0y as the direct

integration method.

The conclusion to be derived from this is that ray

acoustics theory can be used to accurately evaluate the phase

integral.

C. VARYING SOUND-SPEED GRADIENTS

Both ray acoustics methods will now be applied to three

different test cases. A zero gradient, positive gradient

(+0.016 sec 1), and a negative gradient (-0.016 sec " ) linear

sound-speed profile will be used. These simulations will show

that both methods produce equivalent results within an

acceptable tolerance for a variety of media.

The conditions common to each simulation run are:

- source depth of 10 meters,

- horizontal range of 1 kilometer,

- ocean depth of 100 meters,

- speed of sound at the surface of 1500 meters per
second, and

- five values of radial spatial frequency (FR)
evaluated.

The results are presented in Tables 3.4 through 3.9. The

phase integral solution is the phase change in the Y (depth)

direction listed as the MODULO TWOPI THETAY value in radians.

16



TABLE 3.4
ZERO GRADIENT, PIECEWISE LINEAR SOLUTION

RAY TRACING USING PIECEWISE LINEAR APPROXIMATION

CASE IA
NDAIA *4 NUMBER OF GRADIENTS . 3
G1 1) O-COOOO0E-00 I/SEC G1 2) - 0.00003E.00 I/SEC

G( 3) O-COOOO0E-00 I/SEC

YO . 10.0 " DEPTH *100.0 N FREWC - 250.0 HZ CMAX IS100.0 N/SEC
FREOC/CNAX - 0.16667 CYCLES'N RATIO *0.9999 FRMAX - 0.16665 CYCLIES/M WERS *S
DLTFR - 0.033330 CYCLES/N RNGSTP *1.0 M IRZRNG * 1000.0 N
NOTE: PRMIN - OLTFR

NFR BETAO(OEG) DEPTHINI TRVL.TISEC) BETAYIDEG) THETATIRAD) THE TAR(R AD) THE 7AV (RAD) M~ODULO TWOF I

THITAYIRAD)
1 11.534 90.51 3.333667 18.464 0.236511f.04 0.209416E-03 0.502?093E*04 0.5 15
2 23.S76 984 1.666353 156.424 0.26132S4E.04 0.419371?E-03 0.2199419E-04 0.3037115
3 34.066 5.44 1-11I222 143.13' 0.174S504E.04 0-6Z82557E*03 0.111724SE*04 .124A3041
4 3.122 39.?, 0.033411 12687 0.ISORIZRE.04 0.837643E-03 0.4714536E-03 0.221 .::,

s 99.190 24.14 0.66673$ S9.190 0.1017302E-04 0.1017093E-04 0.2094S00E.00 0.2094500

TOTAL CPU TIME - 0 NIHM 22.63 SEC

TABLE 3.5
ZERO GRADIENT, ODE SOLVER SOLUTION

RAY TRACING USING AICIMA CUBIC SPLINE a ODE SOLVER
CASE 2A

NDATA .

YO 10.0 M DEPTH . 100.0 N FREOC - 250.0 MZ CMAI . IS00.0 N/SEC
FREOC/CMAX - 0.16667 CYCLES/N RATIO . 0.9999 FRNAX - 0.1666S CYCLES/N NFRS - S
DLTFR . 0.031330 CYCLES/M RNGSTP . 1.0 N IMRIRMG 1000.0 N
NOTE: PRPIN - DL7FR

NPR BETAO(DEG) DEPTH(N) TRVLTISEC) BETAVIDEG) TIETAT(RAD) THETARIRAD) TIETAY(RAD) NODULO TWOPI

TIETAYIRAD I
I 11.536 90.51 $.333607 166.414 0.S2365I1E*04 0.2094184GE*03 0.S027093F-04 0.4, 595
2 23.374 vR.ee. 1.6660!3 15424 O.2611626E.04 0.41983?lE.03 0.2199419E-04 0.375
3 36.86 54.44 1.111222 143.134 0.1745S04E*04 0.628ZSS?E*05 O.1117248E*04 S 11243041
4 53.112 39.79 0.833417 1:6.878 0.13OSIZBE.04 0.03764SE-03 0.471I36E-0S 0.214466
5 09.140 24.44 3.66733 89.190 0.10

4
7302E-04 0.104701SE'04 0.2094S00E.00 0.20945S00

TOTAL CPU TIME - 15 MIN . 52.36 SEC
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TABLE 3.6

POSITIVE GRADIENT, PIECEWISE LINEAR SOLUTION

RAY TRACING USING PIECEWISE LINEAR APPROXIMATION

CASE 19

PNDATA 4 NUMBER OF GRADIENTS . S

G( IT 0 .16050E-01 IiSEc 03 3 0.l4000E-0 I1/SEC

r, 3) *0.14000E-01 I/S'EC

Vo . 10.0 14 DEPTH *100.0 MI FPEQC *250.0 NZ CMAX *1501.4 14/SEC

FREOC/CMAX . 0.1640 CyCLES/p4 PATIO 0.019. FPMAX0 0.14417 CYCLES/H MFRS *S

DLTFS . 0.0352"4 CYCLE.S/M RNGSTP * .0 M4 HRZRNO * 1000.0 1

14OTE, FAMIN . OL
T
FR

NPR BETAO(DEG) DEPTHTIII IRVLT(SECI BETAY(DEG) THEtATIRAD) THETARIRAD) THETAYIPAD) MODUL.O TWOPt

THE 0 LV R 40

I 1I.5's 87.80 3.3336s2 168.444 0.523648SE*04 0.2og1154E-03 O.SO2729SE-04 01744:s69

2 20.SS2 4. 1.6644824 I54.4,5 0-26182'1E'04 0.41908E-05 0.2I*'89SOE*04 017S40e9!

3 ,.04 8214 55.58 1.11"2 lalI]SS 0.J17456E'04 0.62758S4E-03 0.111787DE0'0G S.71.62108

4 S3.04 30.73 0.853378 124.92? 0.1309066E-04 0.0367617E-03 0.4722847E-01 I.0G5?12

s 87.363 50.73 0.447000 87.974 0.10477.21E04 0.104S977E-04 0.174S788E-01 1.7437878

TOTAL CPU TIME - 0 1433m 22.05 SEC

TABLE 3.7
POSITIVE GRADIENT, ODE SOLVER SOLUTION

RAY TRACINI USING AKIITA CUBIC SPLINE5 A ODE SOLVER

CASE 20

NOATA - 4

VO . 10.0 m4 DEPTH . 100.0 M4 PREOC *250.0 HZ CMAR * 150.4 14/SEC

FRECC/C4AX - 0.1644 CYCLES/14 RATIO *0.!'19 FP148 0.14447 CYCLES/N HWRS *S

DLTFR - 0.0532"4 CYCLES'M 8430370 1 .0 M4 HR.2RNG * 1000.0 14

HOYE: P014TH . DLTFR

NOR PETAOTDEG) DEPONMIM TRVLTtSECI BETAY(IDEG) THETAT(RAD) THETAR(RADI TMETAYIRAD) WOULD31 TWOTOI

THE TAY(RAD I

1 11.5.5 87.80 5.331W5 169.444 0 S23448tE-04 0.20RI95.E-03 O.50272R3E*04 0.744214!

2 23.552 96.-l 3.6"S4 156.4--S 0 2618:4]E-04 0.418340SE-01 .IR53 0.;3.9005

S 36.e24 55.38 1 1111': 143.155 0.I741456EI04 0.62758!E03 0.1117870E-04 S.7462125

ss.045 $-IS 58:3, 12.2 0.1309344E-04 0.836791,E-03 0.4l228'TETS3 1.04577'3

s 911.363 50.71 0.66700C 87.976 0.1047721E'04 0.104S977E-04 0.I0'379SE'01 1.74!78

TOTAL CPU TIME - 14 MIN4 . 24.30 ',EC
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TABLE 3.8
NEGATIVE GRADIENT, PIECEWISE LINEAR SOLUTION

PAY TRACING USING PIECEWISE LINEAR APPROXIMATION

CA:E IC

NCATA *4 NUMB4ER OF GRADIENTS . 3

03 1) -0.16000E-01 I/SEC 6C Z1 . -0.I6000E-01 I/SEC

G03)S -0.1600E-01 I/SEC

To - 10.0 U DEPTH *100.0 M FREOC ZS20.0 HZ CMAX 1500.0 U/SEC
FREC/CMAX . 0.16667 CYCLES/M RATIO *0.9999 FAMAX *0.1666S CYCLES/U MFRS 5
0D.VFR - 0.03130 CYCLES/U RN405W 1.0 M MRZRNG * 1000.0 U

NOTE: FRUIN - DLTFR

NFR BETAO(DEUI DEPTH(M) TPVL~fSEC) VETAY(DEG) THETATIRAD) THE1'AR(RAD) THETAY(RAD) MO0D1L. TOIOPI

THE I AT (AD I
I I1.S35 87.78 !.137,'40 168.47S 0.S242124E-04 0.2094186E-03 0.SOSZ706E'04 6.1576516
20'.573 96.98 1.6680,2 151.450 O..200E*04 0.4189!71E-03 0.220221SE'04 3.113165

3 36.061 55.02 1.122 143.160 0.1747414E-04 0.6282557E*03 0.1111159E-04 0.7515713
4 S.114 38.03 0.034!4s 1:6.109 0.I1058S6E*04 0.837674SE-0S 0.4729117E-03 1.072751I

5 88.8!s 35.0 0,667046 88.112' 0.104779.'E-04 0.1047093E-04 0.69-)161,E00 0.6999612

TOTAL CPU TIME - 0 MIN , 22.61 SEC

TABLE 3.9
NEGATIVE GRADIENT, ODE SOLVER SOLUTION

RAY TRACING USING AKIMA CUBIC SPLINE I ODE SOLVER

CASEC

NOATA 4

To . 10.0 U DEPTH . 100.0 U FREOC *250.0 HZ CMAX - I500.0 U/SEC
FOEOCICMAX - 0.16667 CYCLES/U RATIO *0.'R9% FRMAX *0.1664S CYCLES/M NFRS - 5
OLTFR . 0.03300 CYCLES/U PNGSTP *1.0 U MPZROJG 1000.0U
NOTE: FRMIII . OTFR

"P4 BETAOIDEG) DEPTH(M) TRYLTISECI BETAY(DEG) THETAT(RAD) THETARIRADI THETAY(RAD) MODUL.O TWOPI

THETAYIRAD I
1 11-535 87.77 3.1 69030.47S 0.5242124E*04, 0.20941@iE-03 O.SO3,1706E*04 6.:S7,650
2 23-57S s..' 1.0086022 150.450 0.26,IR05E-0G. 0.4196371E-03 0.220,2M2804 S. is 693

S 181 5.2 1.112408 143.160 0.1747414E-04 0.02'8Z557E.OS 0.11IRI5'E*04 0.5172
S3.114 08.03 0.81434S 126.909 0.1310580E04 0.837674SE-03 0.472-117E-03 l6 12752

5 88.835 05.07 0.607040 88.214 0.104779!E'04 0.1047093E-04 0.699-61,E-00 .R61

TOTAL CPU tINE - 10 -14 . 21.20 SEC
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Tables 3.4 and 3.5 show the results for the zero gradient

case. A comparison between two tables shows that the phase

values (MODULO TWOPI THETAY) agree perfectly. Additionally,

all other calculated values in the tables agree. The only

difference is the TOTAL CPU TIME. Both methods are using a

conservative range step (RNGSTP) of 1 meter, i.e., the

incremental increase in range is 1 meter in the propagation

calculations. For these conditions, the ODE solver is taking

over 30 times longer to run the simulation.

Tables 3.6 and 3.7 show the results for the positive

gradient case. A comparison between these two tables, as

well as the negative gradient results shown in Tables 3.8 and

3.9, shows acceptable agreement between the two very

different calculation methods. The only discrepancies in

calculated values occurs in the modulo 27f 0y phase values

needed for solving the phase integral. The phase calculation

is most challenqing because of the nature of phase (being a

modulo 2v function). The discrepancies for both the positive

and negative gradients are on the order of hundred-thousandths

of a radian or less. The CPU times continue to follow the

pattern seen earlier that the ODE solver requires over 30

times longer to complete a simulation run.

The following ray trace plots, Figures 3.1 through 3.6,

correspond to Tables 3.4 through 3.9. The plots assist

interpretation of the data, but as expected from the tabular

20
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results, no variations in depth or angle of arrival can be

detected.

D. CHALLENGING TEST CASES

A smooth sound-speed profile in the form of a half

sinusoid describes the medium for the next set of

simulations. To this point, the agreement in accuracy between

the two methods has been excellent; however, the shape of a

sine curve is difficult to approximate with piecewise linear

segments. While this will be a challenging test, smoothly

curved profiles do occur naturally. The following set of

values were used:

- 1500 m/sec is the sound speed at the ocean surface and
at the 2000 meter bottom, and

- a minimum sound speed of 1475 n/sec occurs at the 1000
meter depth.

Three sets of simulations are presented using 5, 11, and

17 sound-speed versus depth data pairs. The simulation

results will be examined to quantify the number of ocean

medium sound-speed samples required by each method to converge

to a solution. Also, the agreement in results for the two

methods and the CPU times will be evaluated.

As the number of equally spaced data pairs varies, the

medium and source conditions will be:

- source depth of 1000 meters,

- horizontal range of 3 kilometers, and

- five values of radial spatial frequency (FR)
evaluated.

27



Tables 3.10, 3.11, and 3.12 show the results for the 5,

11, and 17 data pair test cases for the piecewise linear

method. In comparing the first two of these tables, large

discrepancies are seen in the final depths for each of the

five radial frequencies evaluated- errors as large as seven

meters. Likewise, travel time values differ by hundredths of

a second meaning that modulo 2v phase values show no

correlation between test cases. Unfortunately, the variations

between Tables 3.11 and 3.12 where more data points are used,

show the piecewise linear method is not converging to a

solution.

Figures 3.7 through 3.9 correspond to Tables 3.10 thrcugh

3.12. While numerical phase values show gross disagreement,

the inability to detect differences in the graphical

representations illustrates the very sensitive nature of the

phase calculations.

Tables 3.13 through 3.15 show the results when the ODE

solver runs the simulations for 5, 11, and 17 data pairs. The

5 data pair case of Table 3.13 again shows significant

disagreement with the Table 3.14 results using 11 data pairs.

Final depths show differences of as much as a meter while

travel times vary by milliseconds. As with the piecewise

linear method, the modulo 2v phase values have not yet

converged to a solution. Variations of up to 2 radians are

seen.
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TABLE 3.10
FIVE DATA PAIRS, PIECEWISE LINEAR SOLUTION

PAY TRACING USING PIECEWISE LINEAR APPROXIMATION

CASE 1505

NDATA *S NUMBER OF GRADIENTS .

G( 1) -E.SSSSSE-01 I/SEC G( CI - -0.14615E-01 I/SEC

G0 S) 0.l144E-01 I/SEC G( 4) - 0.S35SE-0l I/SEC

ERAYS F PRTALL *F

Yo - 1000.0 M DEPTH ZO200.0 M PREOC . 250.0 MZ CMAR IS150.0 M/SEC

FREOC/C.AX . 0.16667 rYCLES'H 13ATIO *0-099% FRHAX - 0.164S CYCLES/M WARS *S

DLTFR . 0.033330 CVCLES.m RNGSTP *1.0 H NRZRNG * 3000.0 H YR . 40.0M

NOTE: FRMIN - DLTFR

NFR BETAOIEJEG) DEPTH(M) TRVLT(SEC) BETAYIDEGI THETATIRAD) THETAP(RADI THETAYIRAD) MODUL.O TWOPI

THETAYIRAD)

I 11.341 144.74 10.207186 148.504 0.16OS34IE.0S O.6282S57E-CS 0.154051SE*05 5.0674943

2 23.160 41.81 S.103311 156.449 0.801626,E-04 0.I255IE*04 0.A7S9751E*04 S.3248.22

3 34.153 10A4.46 3.60.639 36.180 0.S34508E*04 0.1984767E-04 0.34S9771E-0f 4.0191220

4 SI .868 68.67 2 554747 127.902 0.4012-8TE-04 0.2513023SE.01 0.1I699944E-04 4.5658515

S 79.4-4 1510.1.5 2.057830 $1.249 0.32S2630E-04 0.3141278E-04 0.9115406E-02 5.1894409

TOTAL CPU TIME . 0 MIN . 24.4S SEC

TABLE 3.11
ELEVEN DATA PAIRS, PIECEWISE LINEAR SOLUTION

RAY TRACING USING PIECEWISE LINEAR APPROXIMATION

CASE 1511

NDATA 11I NUMBER OF GRADIENTS *10

G( 1) -0.38627E-01 I.SEC G( :) - -0.34846E-01 I/SEC

G( SI) -0.2764E-01 '/SEC G( 41 -0.1TTSSE-0I I/SEC

G( 5) 0AIO- I/SEC Gf 6) 0 611I7-E-02 I/S.EC

GO 71) 0.ITTSSE-01 I/SEC GI 80) 0.2;64E-01 I/SEC

GO 9) 0.34946E-01 I/SET G(10) 0 0687E-01 I/SEC

ERAYS F PPTALL F

To - 1000.0 M DEPTH4 2000.0 m FREOC 250.0 HZ CMAX IS 50 H/SEC

PREOS/CMAX - 0.16667 CYCLES/M RATIO *0.9"'0 FAMAX 0.16665 CYCLES/H NFRS S

DLTFR . 0.003330 CYCLES/N RNGSTP 1.0 M HRZ44G 3 000.0 m YR - 40.0 H
NOTE~ FRMIN - DL7FR

NFR BETAO(0EG? DEPTHOHI TAVLT(SEC1 PETAY(DEGI THtTATIRAD) THETAR(RAD) THETAVIRAD) HODUL.O TWOPI

7HE TAYV R AD
I I16 107.50 10.,-14-,44 16S.504 0.1604646E*05 0.6.*8557E-0S 0.1%4.02DE*05 1-2A5,14

2 .0.40 37.'? S.109071 15469 0.802374,'E-04 0.154511E*06 0.6767.131E-04 0.2600057

363A.53 1067 3. 3.405624 36.16S 0 S"'-4SE*04 0.189'46E-04 0.464778E*04 2.7600820

4 S1.868 67T'33 -557146 127,94S 0.4fIT070E*04 0.2S13023E-04 0.150404SE*0e6 2.36636-1

s 71.444 1520.40 , 060169 81.054 0.3.36104E-04 0,3141278E-04 0.94580E-02 0.5,80165

TOTAL CPU TIRE - 0 "14 - S5.36 SEC
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TABLE 3.12

SEVENTEEN DATA PAIRS, PIECEWISE LINEAR SOLUTION

RAY TRACING USING PIECEWISE LINEAR APPROXIMATION

CASE IS17

NDATA - 17 NUMBER OF GRADIENTS . 16

G( 1) - -0.390OE-01 I/SEC G( 2) • -0.37519E-01 I/SEC

G( 3) - -0.3457?E-01 I/SEC G( 4) • -0.30307E-0I I/SEC

G( 5) - -0.24873E-01 I/SEC G( 6) - -0.19482E-01 i/SEC

01 7) - -0.11I81E-01 I/SEC G( 8) • -0.3942?E-02 I/SEC

G( 9) - 0.38429E-02 I/SEC G(10) 0.IIS81E-01 i/SEC

G(I1) - 0.10482E-01 I/SEC 6(12) * 0.248YIE-01 )/SEC

OilS) - 0.30307E-01 I/SEC G(14) - 0.34577E-01 I/SEC

O(tS) - 0.37S19E-01 I/SEC 0(14) - 0.3901SE-01 I/SEC

ERAYS - F PRTALL - F

YO • 1000.0 M DEPTH • 2000.0 M FREOC e 250.0 HZ CHAX S00.0 M/SEC

FREOC/CMAX - 0.16667 CYCLES/M RATIO - 0.9999 FRMAX - 0.16465 CYCLES/M NFRS - S

DLTFR - 0.033330 CYCLES/M RNGSTP - 1.0 M HRZRNG 3000.0 M YR - 40.0 M

NOTE: FRMIN - DLTFR

NFR BETAD(DEG) DEPTH(M) TRVLT(SEC) BETAYIDEG) THETAT(RAD) THETARIRAD) THETAY(RAD) MODULO TWOPI

THETAY(RAD)

1 11.341 136.67 10.217866 168.506 0.160S019E*05 0.6282557E*03 0.154219SE05 2.9937577

2 23.160 37.53 5.108620 156.49 0.8024602E*04 0.12565I1E*04 0.6768091E-04 1.1002238

3 36.153 1067.75 3.405996 36.160 0.5350126E-04 0.1884767E*04 0.34453S9E*0G 3.3242727

4 S1.868 678.98 2.SS7644 127.973 O.4017538E*04 0.2S5I023E*04 0.15045ISE04 2.833875S

5 79.494 15;.62 2.060652 81.322 0.3235650E,04 0.3141278E*04 0.95271SOE+02 1.0237247

TOTAL CPU TIME - 0 MIN . 25.94 SEC

30



C:

a:
C- L

Li -

.. .. .. .. .. . . . .. .... .Li C
Li Ui

Lij

C-k

a-Cia_

I-fL

C) C-

f )IIA0-------

Figue 37 Ra trce orreponingto Tble3.1

31



C:

zz

rr

.. . . ..

C)D

LiO

CUL~ ~ ~ - -- 3

(W) H 'Air

Figure~~~~~ ~ ~ ~ ~ ~ 3. aNrc orsodn oTbe31

32i



CC
u f Cf

E CO

aCD

a: C

0~(2

0~V

Figue 39 Ra trce orreponingto Tble3.1

Cr * 33



TABLE 3.13
FIVE DATA PAIRS, ODE SOLVER

RAY TRACING USING 40354 CUote SPLINE I ODE SOLVER

CASE 2000

00 * £000.0 H DEPTH *2000.0 H4 PREOC * 2150.0 047 CHAR * £50.0 H/SEC

FREOC/CIIAX . 0.14667 CVCtES/H PATIO *0.9S9t P05*0 0.1666S CYCLES/H MFERS 5

DTo.FR . 0.0033310 CVCLES'H PNGSIW 1 30 H4 MAZRHO 3000.0 H YRt * 40.0 H

NOT E, P553W * MIPS

WU ARETAO3OEO3 DEPYH(ST TRVLT3SEC)I RETA/IDESI THEOAO3RADO THETA*1RA03 TH*TAY3RAO3 MODUO0 OWOPI

3 1.343 137.90 ID0:20257 169.50' O.3405004E*05 0.42R2007E'03 0.1542S11E-00 0.464177

2 "2314 14.51 0.0'23 35452 0.S06461E-04 0.320453E-04 0.47491800004 2.90910R4

3 3.3 1040.49 3.401000 06.107 0.53$140:E004 0.3004747U-04 0.0444435E*04 4.Sqq1035

4 51.060 470.00 2.500304 127.973 0.4018402E-04 0.2?13023E-04 0.3500079E-04 3.6176730

0 79.494 352.0.2 2.0400- 81306 0.3236623E-04 0.3141218E-04 0.95044600*02 1.0960901

TABLE 3.14
ELEVEN DATA PAIRS, ODE SOLVER

RAY 70AC3N3 U01ING 40354 C/PlC SPINE 8 ODE SOLVER

CASE 2013

NOATA 113

tRAYS F P0061.3 F

00 . £000.0 H DEPTH *2000.0 M TREOC * 250.0 HZ C560 * 300.0 H/SEC

FREOCiCMAR * 0.13447 CvCLES/M 0P030O 0.9-9 FMA P04 0 -166344S CYCLES/H WOO S

03.770 * 0.030300 CYCLES/H PT/COOP * .0 M 0402506 * 000.0 H YR * 40.0 H

NOTE. P053W - OLTPO

WIER RETAO3OEOT DEPTHIS) TOWYTOSECT PETAYIDO) 0oCTATPRAD3 THETAS3RAO3 THFTA0304E33 MODULO. 70600

1 133043 304.00 30.230420 340.501 E.300513E*05 0.422I .S42332E*05 4.30 2002

2 20.340 37..0 5.1IT3-17 106.449 3.9002034E'04 0. 325453E*04 0.471R00E'04 1.6120425

3 34.353 3047.97 3.404254 30.357 O.5350553E*04 3.3004707E-04 S.0405744EU04 3.7200773

4 03.000 470,73 2.0070940 327.$70 0.4E37000E'04 0.2533023E-04 0.3004035E*04 3.3540515

s 79.4t4 3022.3' 2.0033 03.0312 0.3236934E-04 0.114127$EE04 0.9555000PE'02 1.307800

TOTAL CPULTIME * 40 MIN4 . 34.S0 SEC

TABLE 3.15
SEVENTEEN DATA PAIRS, ODE SOLVER

SAY TRACING SIN .350 435 Ct/PlC SPLINE & OE SOLVES

CASE 2317

FPA/S . P P00*1.3 *

00 . 3000.0 DEPTH *2000.0 H F4OC 200.0 04Z CHAW *£00.0 H/SEC
FQFOC'C.AX 0.10'4 CYCLE-,P PATIO F .00 P"AO 0.34645 CYCLES/H PIRS S

03.7'5 - 0 007010 CYCLE-,, 00 1? .0 H 0152040 3000.0 H VSk * 40.0H

NOTE P5034 * MIP

RP RETAOT0ET, 3ETNW) T0VT.T(TECT r PEA TDEO THE0AT3S4DT THEOARTRADT THI0AY3PAT3 HlOODO IWOP I
THEI 7 6 7040

3 353 300.30 IA 2/905 b 1n 0. 151303E0S 0.02205TE00 R.3020500 4. 074

2 2130 07.25 S 1091TS /1.4491 0.00:535'E'E4 0 .25003E-04 0.OTOPOGREO04 1.4070037

3 6 00M 301.'4 1.G"613. 30.0 .355T.4 .044T'4 0!454E0 3.7048S69
4 53.000 07:074 2.00570i 1:' 170 0.4500000.E04 0.ZSIOZE.04 0.043E0 3.514

0 79.404 3521 20:2 177 0.32168-E0*04 0.314127@E-04 0.04TE0 .2950500

TOTAL. CPU T3f.q 47 .1~. '.oSE,
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A comparison of Tables 3.14 and 3.15 shows that phase

calculation results converged for each of the five FR values.

The increase in data pairs to 17 from 11 has changed the

final depth values by only a few hundredths of a meter.

Likewise, the very sensitive modulo 21 phase values show a

change of only hundredths of a radian or less. The ray trace

plots for Tables 3.13 through 3.15 are provided in Figures

3.10 through 3.12.

The CPU times for these three tables show the ODE solver

to be costly, but insensitive to increases in the number of

data pairs. That is, approximately the same amount of CPU

time is required regardless of the number of data pairs used.

Tne CPU time for the piecewise linear method also proved

fairly insensitive to the number of data pairs used as seen in

Tables 3.10 through 3.12.

The significant findings of this section are:

- the ODE solver can perform accurate phase
calculations with only 17 data pairs sampled from a
2000 meter deep ocean having a curved, sinusoidal
sound-speed profile,

- the piecewise linear approach does not converge to a
solution using the 17 data pairs, and

- the differential equation solver is very costly to use
in terms of CPU time versus the piecewise linear approach.
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E. SPECIAL INVESTIGATIONS

Each of the two phase calculation methods has shown one

characteristic weakness. The piecewise linear method did not

converge to a solution in the sinusoidal sound-speed profile

case when 17 data pairs or samples were provided. In

contrast, the ODE solver does converge to a solution, but is

costly in terms of CPU time. This section will attempt to

tailor the settings for each method to compensate for its

weaknesses.

The simulation results in Tables 3.16 through 3.18 were

produced by the piecewise linear method using 29, 55, and 65

data pairs, respectively. All medium and sound-speed profile

characteristics remain the same as in the previous section.

As the number of data pairs increases, the 0y values are

converging to the Table 3.15 solutions obtained with the ODE

solver. Unfortunately, the phase values continue to show

unacceptable errors of tenths and hundredths of a radian for

the best case of 65 data pairs.

Table 3.19 shows the results for the ODE solver when the

range step (RNGSTP) parameter is increased to five meters. As

explained earlier, the range step is the differential

equation system independent variable. All calculations prior

to Table 3.19 used a conservative range step of one meter for

both methods. Table 3.19 compares favorably with Table 3.15

achieving a balance between CPU time and accuracy. While the

degradation in accuracy is only microseconds for travel time
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TABLE 3.16
TWENTY-NINE DATA PAIRS, PIECEWISE LINEAR SOLUTION

RAY TRACING USING PIECEWISE LINEAR APPROXIMATION

CASE IS29

NOATA - 29 NUMBER OF GRADIENTS - 28

G1 1) - -0.3918SE-01 I/SEC 01 2) - -0.3869SE-01 1/SEC

01 3) * -0.3771SE-01 I/SEC 01 4) - -0.36262E-01 I/SEC

01 S) - -0.343S2E-01I1/SEC 0( 4) - -0.32010E-01 I/SEC

G( 7) - -0.29266E-01 I/SEC 01 3) - -0.26154E-0I 1/SEC

G( 9) a -0.22712E-01 1/SEC 0V10) - -0.18986E-01 ]/SEC

G(II) - -0.15020E-01 1/SEC G012) - -0.10964E-01 1/SEC

G(13) - -0.6574SE-02 I/SEC G(14) - -0.22007E-02 1/SEC

0(15) - 9.22007E-02 I/SEC 0(16) * 0.6374SE-02 I/SEC

G(17) * 0.10866E-01 1/SEC 0118) 8 0.15020E-01 1/SEC

G19) - 0.18986E-01I1/SEC G(20) - 0.22712E-01 1/SEC

0(21) - 0.26154E-01 I/SEC 0122) - 0.29266E-01 1/SEC

0123) - 0.32010E-01 I/SEC 0124) - 0.34352E-01 1/SEC

0125) - 0.36262E-01 I/SEC 0126) . 0.377isE-o1 1/SEC

0127) - U.3869SE-01 I/SEC 0128) a 0.39188E-01 I/SEC

ERAYS - F PATALL - F

yo a 1000.0 M DEPTH * 2000.0 M FREOC a 250.0 M2 CMAX - 1500.0 P4/SEC

FREOC/CKAX - 0.1666? CYCLES/N RATIO - 0.999f FRHAX 0 0.146S CYCLES/M NFRS . S

DLTFR a 0.033330 CYCLES/M RHGSTP v 1.0 M IRZRNO 3 000.0 M YR a 40.0 N

NOTE. FRNiM a DLTFR

lER BETAO(DEG) OEPTH(M) TRVLTtSEC) PETAY(DEO I HETA7IRAD) THETARIRAD) THETAY(RAD) MODULO0 TWOPI

THE TAYCR AD )

1 11.341 136.31 10.216342 148.S06 0.160SOISE40S 0.6292SS7E#03 0.1542269E*OS 3.7413092

2 23.160 37.34 5.10085? 156.44 0.8024913E-04 0.1256511E*04 0.6769462E404 1.4710044

3 36.1s3 1067.68 3.4061se 34.157 O.SIS0360E.04 0.1684767E-04 0.S46S61SEk04 3.s77393

4 511036 676.82 2.55?772 127.976 0.4017739E*04 0.2S13023E*04 0.1504714E404 1.0341743

3 79.494 1522.11 2.060567 31.320 0.323673DE-04 0.3141276E404 @.9S45137E#Q2 1.20419341

TOTAL CPU TIME - 0 MN , 24.46 SEC
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TABLE 3.17
FIFTY-FIVE DATA PAIRS, PIECEWISE LINEAR SOLUTION

PAY TRACINO USING PIECEWISE LINEAR APPROXIMATION

CASE 1555

NDATA . SS NUMBER OF GRADIENTS . S4

G( 1) - -0.3924SE-O1 I/SEC G( 2) - -0.391I5E-01I1/SEC

G( 3) - -O.38850E-01 1/SEC 01 4) a -0.S8433E-01 I/SEC

G( 5) - -0.37926E-01 I/SEC G( 6) - -0.37271E-01 1/SEC

01 7) - -0.36490E-01I1/SEC 0( 8) - -0.SSS86E-OI I/SEC

0( 9) - -0.345d]E-01 I/SEC GOO0) a -C.S3Gl9E-01 I/SEC

G(11) - -0.3216SE-01 1/SEC G(12) - -0.30800E-01 1/SEC

0(13) - -0.293S1E-01 I/SEC G(14) a -0.27764E-01 I/SEC

G(15) - -0.26103E-01 1/SEC 0(16) - -0.24353E-01 I/SEC

0(17) - -0.22S21E-01 I/SEC 0(18) . -0.2061SE-01 1/SEC

G(19) - -0.1063SE-01 I/SEC G(20) a -0.16594E-01I1/SEC

G(21) - -0.14497E-01 1/SEC G(22) a -0.123S0E-0I I/SEC

0(23) - -0.10162E-01 I/SEC G(24) - -C.7399-02 I/SEC

0(25) - -0.S6907E-02 I/SEC G(26) a -0.34221E-02 I/SEC

0(27) - -0.11420E-02 1/SEC 0(28) * 0.1142DE-02 1/SEC

G(29) - 0.34221E-02 1/SEC 0(30) a .SG907E-02 I/SEC

G(31) - 0.19399E-02 I/SEC 0(32) a0.10162E-01 I/SEC

0(13) - 0.I23SOE-0I I/SEC 0(34) a0.14497E-01 I/SEC

0(3S) - 0.1094GE-01 1/SEC G(36) a0.18635E-01 I/SEC

0(37) - 6.2061SE-01 1/SEC 0(38) a0.22521E-01 I/SEC

0(19) * 0.243SSE-01 I/SEC 0(40) * .26103E-01 I/SEC

G(41) * 0.27764E-01 I/SEC 0(42) *0.29331E-01 I/SEC

G(43) m 0.30800E-01 1/SEC G(44) *0.3216SE-01 I/SEC

0(4S) a 0.33419E-01 1/SEC 0(46) - 0.34SGIE-01 1/SEC

0(4?) a 0.SSS86E-01 I/SEC 0(48) * 0.3649CE-01 I/SEC

0(49) o 0.37271E-01 I/SEC G(50) - 0.37926E-01I1/SEC

0(51) a 0.18M5E-01I /S.EC 0(52) a 0.3885DE-01 1/SEC

0(53) a 0.3t11SE-01 1/SEC 0(S4) a 0.3924SE-0I I/SEC

EPAY - FPRTALL - F

YO a 1000.0 M1 DEPTH a 2000.0 M FREOC a 250.0 HZ CMAX a 1500.8 M/SEC

FREOC/CMAX w 0.16467 CYCLES/M RATIO - 0.9999 FRMAX a 0.1646S CYCL.ES/M HFRS a 5

DI.TFP * 0.033330 CYCtES/M RNGSTP * 1.0 M1 IWZRN0 3000.0 91 YR a 40.0 M1

NOTE: FRMIN * DLTFA

N*R BETAO(DEO) DEPTH(M) TRVLT(SEC) BETAY(DEG) THETAT(RAD) THE'VAR(RAD) THETAYIRAD) MODULO. TWOP I
THE TAYIRAD)

1 11.341 136.18 10.218S10 148.306 0.1605120E*05 0.6282SS7E$03 0.1542294E*0S 4.0060532

2 2S.160 37.28 S.108940 156.469 0.802S104E*04 0.12S6S11E*04 0.6769593E404 1,6024783

3 36.153 1067.94 3.406215 36.157 0.S350470E-04 0.1994767E*04 0.3465702E-04. 3.6673828

4 51.848 678.77 2.SS7817 127.0?7 0.4017@I0E-04 0.2513023E*04 0.1504797E-04 3.108334

s 79.496 1522.29 2.060608 81.317 0.323679SE-04 0.314127SE404 0.9SS1684E*02 1.2690645

TOTAL CPU TIME - 0 MINW , 26.61 SEC
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TABLE 3.18
SIXTY-FIVE DATA PAIRS, PIECEWISE LINEAR SOLUTION

RAV TRACING USING PIECEWISE LINEAR APPROXIMATION

CASE LS6S

NDATA *6S NUMBRER OF GRADIENTS . 64
G(1) -0 3 -R SE-01 I/SEC 3( :) - -0.39160E-01 I/:SEC
6( 3) -0,38971E-01 I/SEC 0( 4) *-0.19608E01 I/SEC
G( 5) *-.8E-1I/SEC G( 6) *-0. !70G4E-01 1/SEC
G1 7) *-0.307Z84E0 I/SEC G(6) R -0-166ME-01 I/SEC
G1 9) -0.358'7-0I I/SEC G110) -0.35073E-01 I/SEC
G)11) *-0.SG16SE-0I I/SEC G(12) *-0.33ITGE-01 I/SEC
G(13) * R313-1I/SEC 6)14) *-O.!o

4
55E-oi i/SEC

0)151 ) -0.297!3E-01 I/SEC G(16) *-0.28'3E-0I I/SEC
G(17) *-0,2707SE-OI I/SEC G(10) -0.25WGE-0I I/SEC
G(I-) --.241SE-01 I/SEC 0)20) -0._^610E-01 I/SEC
01211 I -0.21007E-01 I/ SEC G0_' ) *-0.19SGE-0I I/SEC
G(23) -0.17?654E-01 I/SEC 612c) *-.51E0 I/SEC
0(.25) *-0.1413:!E-01 I/SEC 0() -0.1,317E-01 I/SEC
0(27) -0.10473E-o) I/SEC G(28) *-0.8603ZE-02 I/SEC
0)2!) *-0.67130E-0: I/SEC 0130) *-0.G.8066E-02 I/Si-C
G(311 -0.,18986E-02 I/SEC G()32) 1 -0.96S6G.E-03 I/SEC
0t) 0.9,6aE-03 I/SEC Gf341 7 0.28986E-02 I /SEC
G(15) 0.48066E-02 I/SEC G)36) *0.671!DE-0? I/SEC
G(37) 0.9603-E-0: I/SEC 0(281 0 .10G7!E-01 I/SEC

G *Q 0.1,317E-01 I/SEC G(G0) *0.1413,E-01 I/SEC
G(41 ) *0-ISI12E-01 1/S EC 01462) *0.176S4E-01 I /SEC
r(G3) *0.103SGE-01 I/SEC G44) *0.21007E-Ol I/SEC
GIGS) O .22610E-01 I/SEC G(46) *0.24IS8E-01 I/SEC
G)47)1 0.2564E-01 I/SEC G(48) O.2707SE-01 I/SEC
GIG') 0 .2843S80R I/SEC G150) *O.2q733E-0I I/SEC
6151) *0.3045SE-01 I/SEC 6)52) 0 .3,10SE-01 I/SEC
G)53) *0.31174E-01 I/SEC 0(54) * OSGIASE-0l I/SEC
0755) * .SS07SE-01 I/SEC G156I 0 .35997E-01 I/SEC
0157) *0. 266350-01 I/SEC G)58 0 .37:84E-01 I/SEC

*F9 0.3784e.E-0) I/SEC 0)60) 0 .3831.^E-01I1/SEC

016l1 0.3068SE-01 I/SEC 6(6Z) *0.38471E-01 I/SEC
0)65) *0.39160E-01 I/SEC G(64) 0 .31.54E-01 I/SEC

ERAYS P PRTALL F
yo ( 000.0 H DEPTH * 005.0 M FREOC zs25.0 Hz CHAR IS150.0 N/SEC
FREOC/CHAI - 0.16667 CYCLES/N RATIO *0.4994 FAMAX 0.1466S5 CYCLES/MN WRS S
% rR . 0.033110 CYCLES)) RNGSTP *1.0 M HR2RNG * 3000.0 m yR - 40.0 N
NOTE. FRMIN .* F

NPR BETA0)CIEG) DEP)H() TRVLT)SEC) RETAYIDEG) THETATIRAD) THETAR(RAD) THETAYIRAD) MODUL1O TWOPI

0 HET0AV (8AD I
I 11.141 136.17 10 218S.8 168.536 0.1605I23E-OS 0.6:82SSE-03 R.15G227E-OS 4.0040899
2 .3.160 37.27 S.100"4. 156.4G. 0.80,SII8E*OG 0.1256S11E*04 0.6760607E-04 1.6163493
3 36.151 1067.4G 3.406::1 06.157 O.S3S0G74E*OG. 0.188G767E-04 0.3465712E-0G 3.676-5I5
4 51.868 $71176 2.5578:: 1T7.4,9 OA4tIT8IREOG 0.2SIIOZ3E-04 0.1047X5E-0G 0.1134:51

5 ?-.444 ts22.Sl 2.060612 81.317 0.12!680.E'04 0.31141278E*0G 0.-55260E*0: 1.27582)7

TCTAL CPU TIME - 0 MN . 26894 SEC
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TABLE 3.19
INCREASED RANGE STEP, ODE SOLVER SOLUTION

PAY TRACINC US1ING AKINA CUBIC SPLINJE 9 ODE SOLVER

CASE ZS17

NE7ATA 17I

EPAYS F PATAL. F

YO - 1000.0 N DEPTH Z 000.0 M FREOC * 2S0.0 mi CMAX * 100.0 N/SEC
FREOC.ICMAX - 0.16667 CYCLES/N RATIO *0.9q.9 FRMAX 0,1666S CYCLES/N MFRS S

DLTFR - 0.03333C CYCLES/M PNGSTP *5.0 M )IRZRNO 3000.0 N YR - 40.0 N

NOTE: FRNIN - DLTFO

4FR BETAOIDEG) DEPTHIN) TAVLTISEC) BETAYCOEG) THETAtIRAD) THETAP(RAD) THETAVIRAD) NODULO TWOPI

0.152306.STHIETAY 
(BAD)

1 11.341 136.0' 10-18584 168e.506 0.16051S1E*05 0.GZ2257E*03 0.54.6E0 .2 198
2 23.160 37.1s S.10817S 156.449 0.80ZSM5E*04 0.1,256S11E*04 O.676864SE*0e4 1. 657047

3 36-153 1067.96 3.e36,39 56-157 0.S3SOS07E-04 0.1884767E-04 0.3465740E*04 3.704,77704 51.868 678.74 2.57836 1.7.978 0.40178!qE*04 0.2513023E-04 0.1-,04817E-04 3.1S35500
5 79.494 I177.36 2.060 25 811317 036SE040.314128BE*04 0.9554370E-02 1.2956'0153

TOTAL CPU TIME - 10 MIN . 0.53 SEC

and hundreds or thousandths of a radian for modulo 2vr Oy, the

reduction in CPU time is following a nearly linear relation

to the increase in range step, that is, CPU time was reduced

approximately by one-fifth.

F. EIGENRAYS

Tables 3.20 and 3.21 show the eigenrays found by the two

ray acousti1cs methods. Figures 3.13 and 3.14 correspond to

these two tables. The figures show the sound-speed profile to

be that of a SOFAR channel. This channel profile was chosen

because it produces interesting ray patterns, and it commonly

occurs in nature. The minimum sound-speed occurs at 1000

meters depth and a local minima occurs at the ocean surface.

The tables show that each method found the same eigenrays at
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TABLE 3.20
EIGENRAYS FOUND USING THE

PIECEWISE LINEAR APPROXIMATION METHOD

RAe TACINf, USlIG FIECEWISE LINE~AR ArPROxIMAI ION

CASE ICHI

NOfATA 4 NUMBEHRR OF GRADIENTS 3

Of 1) 0.16000E-01 I/SEC G( Z) *-0.1888,E-01 Il~c

G( 3) *0.1100OF-01 I/SEC

ERAVO t PTALL F

YO . 100.0 H VFOTIM , 000.0 H FREDC z 25.0 HZ

ONCSIP S.00 H A1C,-,TF P I. 0 DE G HRZRIIG 200.0 N YR *250.0 M

YERROR S 5.M

E CE~nAYS

PAY BE TAO (DEC, DF~rH M( RIVL I (SC I BE TAY (CEr ) HFTAI)RAD1 7HETARIRAD) THETAYIRAD) MODULO OWOPI

TKETAY(RAOT

I 53.000 20.1 0.167.74 52.Rs6 0 ^627462E-03 0.167214!IER13 0.9S4)10E02 1.2e.93187

2 54.000 2.5.61 0.16SIIZ 00.pl04 0.000s6-E03 0.16-43E-03 0 80!-31E-02 I.98 1119

3 100.000 4'6.73 0-6040 z"39 0.'.l .. E-0S 0.104 7 SE-030 .3147556E-03 0.5" 3779

TOTAL CPU TIME . 0 HITI 22.'.r

TABLE 3.21
EIGENRAYS FOUND USING THE

ODE SOLVER METHOD

RAi fRACIIJC , 1)r. AXfMA C'JPfC SrLfJE 9 ODF S')LVE0

FRY T rPTAtL F

* , 00.0 V F'T 200,tl M FREor 200.0 HZ

011,311P S .0 m A-S 1.0 Or H4TzR))O * 200.0 H YR * 200.0 H

RAY PETAO(VOOO) FFOT))!MT T4VLTTf'C)' I P ?AY (DE r TT'EAtIAITI THETARIRAD) TMETAYIRAT) MODUL)O TWOPI

THETAVIRADI

I 01.0en 20Ro 0.1IM00 5Z lTe 0-26:'.214E-03 0.1672'. IE*030 .-S17.S0E-)' 0.-A22

* 0.000 "S.4' n I',I -3.Z 02'A0F0 .R20E0 RRa00F2 I60

3 Iso.0LtT 216.S4 0--90.T 2!~ 0.'.f'IOS3103 0.1047O0EO03 0.SIG'.'.0E*0) 0.:977732

TOTAL CPU TI-F .f ,T .- ^-r:'
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launch angles of 53, 54 and 150 degrees, The tables highlight

this problem's parameters to be:

- a source depth y0 of 100 meters;

- a receiver depth Yr of 250 meters;

- and a horizontal range (HRZRNG) to the receiver of 200
meters.

As expected, the ODE solver runs into range limitations

imposed by CPU time requirements. The 200 meter example

presented consumed over 24 minutes of CPU time using Lhe ODE

solver versus the 21 seconds used by the piecewise linear

method.

Tables 3.22 and 3.23 (along with their corresponding

Figures 3.15 and 3.16) show solutions to long-range eigenray

search problems. These two examples continue to use a source

depth y0 of 100 meters and a receiver depth Yr of 250 meters.

Table 3.22 shows a horizontal range (HRZRNG) of 10 kilometers

with a depth error Yerror at the receiver of 2 meters. The

angle step size (angstp) between each ray is 0.1. Table 3.22

also shows that three eigenrays were found with launch angles

of 51.20, 90.90 and 129.5'. The CPU time for this 10km run is

shown to be 8.5 minutes.
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TABLE 3.22
LONG RANGE EIGENRAYS, PIECEWISE LINEAR SOLUTION

PAY TRACING USING PIECEWISE LINEAR APPROXIMATION

CASE 1CHA4

NOATA A NUHEER OF 6RACIENTS *3

G1 1) TIXOTTE-0l I/CEC 01 Z) *-0.1888QE-01 1/SC

Gt 3) TITOO0CE-ol I/SEC

EPAS T PRTALL F

Y) t 100.0 H DEPTH :000.0 H FREOC * 250.0 HZ

PNCOSTP S.0 H ANGSTP 0.1 LEG HR20N0 * 10000.0 M YR *250.0 M

FIGENDAYS

PAY 8ETAO(DEGI DEPTH(HI TRVLTISEOT 8ETAV(DEG) THEIAT(RADI THETARIRADI THETAYIRADI MODUILO TWOPI

THETA? (PAC)

1 51-00 248.'I 8.645IS8 51.067 O.IOSBIOAE*D5 0.816039,E-04 O.5420648E'04 4.5420569

* *.-co0 2.7 6.6T49'6 606 0.10485T6E-05 O.104696'0E'05 0.154221.E-02 2.8557604

3 127.STO00 .2 8.730378 50.370 0.I0TI0365E-05 0.8079626E-04 0.56!4020E004 4.2855'81

TOTAL CPU TIME . 8 MIN , 31.A'CE

TABLE 3.23
* LONG RANGE EIGENRAYS, PIECEWISE LINEAR SOLUTION

RAY TRACING USING PIECEWISE LINEAR APPROXIMATION

CASE GNU6

NOATA 4 NUHO5RP OF GRADIENTS*3

0) 1) *0.I500CE-0I IiCEC G( 2) -0.18898E-01 I/SC

0) 3) * TITOOCE-0l I/SC

ERA/S *T PRTALL F

YOT 100.0 H DEPTH * 000.0 H FQEOOQ 25. Hz

PNGTTP * 5.0 M ANUSTP 1.0 DEC, HAZRNO 50000.0 H YR - 250.0 M

VEPPOR * 1.0 m

PAY RETAO)CEG) DE
t
TH)H) TRVLT)OEOT BETAVIDEGI THP-TAT)RADT THEIAR)RADT THETAYIPAOI MODULO TWOTPI

7 HE70 XY10ADl

1 40.000 2066' 2.4183 1?.-lT 0.8,'34401E-05 0.3065,^QIE*05 0.486-101E-05 2.6804315

1 7000 261.TT 3440': 1250 S.4T-8 RE-05 0.51II05E-05 0.2888117E-04 6.1050528

3 1I4.TT^ 208.00 !R.520812 60.820 0.6Tr^835SE.0S 0.G5711040E-05 0.I4TITRSEOCS 2.729^732

4 122.OTT 257.74 3-.T!4666 121.18Z 0.624150TE*05 0.441'825E05S 0.1801581E-05 I.-'2030

TOTAL CPU TIME * 4 MIN - 2V.61 SEC
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Table 3.23 shows simulation results using the piecewise

linear method with a horizontal range (HRZRNG) of 50km.

Parameters that affect execution time such as angle step size,

depths, etc., match the simulation presented in Table 3.21

using the ODE solver. Table 3.21 shows that the ODE solver

used 24 minutes to complete a 200 meter range eigenvalue

problem. In comparison, Table 3.23 shows that the piecewise

linear method completed the 50km run in only 4 minutes.

In summary, this chapter has shown that

- the ODE solver performs accurate phase calculations
with far fewer data pair samples when a smooth
sound-speed profile is encountered;

- increasing the range step size of the ODE solver to
five meters reduces the CPU time cost without
signficantly affecting the phase solution accuracies;

- the piecewise linear method can run long-range
simulations using relatively little CPU time; and

- the piecewise linear method requires many sound-speed
data pair samples for an accurate solution in a medium
with a smooth, sinusoidal profile.
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IV. CONCLUSIONS AND RECOMMENDATIONS

The transfer function of the inhomogeneous ocean based on

the WKB approximation requires solving a phase integral. Ray

acoustics theory can provide solutions to this phase integral.

The simulations performed show that the travel times

calculated using the theories of ray acoustics can be used to

solve the phase integral avoiding direct numerical

integration.

Two applications of ray acoustics produced computer

simulation codes which

- are capable of solving for the position, travel time
and phase of a propagating ray, and

- have very different advantages and costs.

The first application was the piecewise linear approximation.

Sound-speed versus depth data pairs sampled from the ocean

medium were connected with constant gradient linear segments.

Well-known, closed form equations form the mathematical model

for sound propagation. The solutions are low cost (in terms

of CPU time), but many data samples are required for accurate

phase solutions for arbitrary sound-speed profiles.

In contrast, the Akima cubic spline/ODE solver method uses

the medium samples to form a continuously variable sound-speed

profile. Accurate phase calculations can be made with a

minimum of sound-speed versus depth data pairs. The

disadvantage in using the ODE solver is its exorbitant cost in
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terms of CPU time. Simulations must be short range problems

to limit computing costs.

The ability to search for and identify eigenrays was

developed for each of the two ray acoustics theory

applications. Very distinctive characteristics were seen for

phase calculations in terms of the number of data samples

needed to assure accurate solutions. The identification of

eigenrays is an easier task of position or depth computation.

Here the distinctions tend to disappear with the two methods

arriving at the same solutions for eigenray launch angles.

The cost or CPU time required continues to strongly favor

using the piecewise linear approach.

These findings indicate that most propagation problems

will require a piecewise linear approach for computational

efficiency. Using the ODE solver would severely limit the

range of computer simulations.

Careful sampling of the ocean media is required to obtain

accurate results from the piecewise linear method. Sufficient

sound-speed versus depth data pairs must be used to accurately

represent the sound-speed profile.

This thesis developed the tools to quantify the strengths

and weaknesses of two phase computation methods in a variety

of media. With these findings in mind, future work

recommendations are to

- incorporate each phase computation technique as a
module in the larger pulse propagation code; and
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- run pulse propagation simulations to compare the

received pulse shapes.

If this comparison shows that the piecewise linear

approximation produces a relatively undistorted received

pulse, it is an efficient solution to the phase computation

problem.
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